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Natural convection melting of a frozen porous
medium
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Abstract—Melting of an ice-porous media (glass beads) system contained in a rectangular test cell has
been studied both experimentally and numerically in order to examine the effects of natural convection
and density inversion of water in the melt region. When the superheat across the liquid region is small the
flow in the porous media is weak and the interface is almost planar. For larger superheats, the strength of
natural convection flow, the interface velocity and shape are all found to depend on the imposed temperature
difference and the permeability of the porous medium. The measured temperature distributions are com-
pared with predictions of a numerical model that considers both conduction in the solid and natural
convection in the liquid regions. The model is based on volumetric averaging of the macroscopic transport
equations, with phase change assumed to occur volumetrically over a small temperature range. Both
Brinkman and Forchheimer extensions are added to the Darcy equations. The effect of density inversion
of water on the fluid flow and heat transfer is modeled. Reasonably good agreement is found between the
experimental data and numerical predictions. The numerical and experimental results establish conclusively
that natural convection in the melt region causes the front shape to become nonplanar and increases the
melting rate.
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INTRODUCTION

SoLip/liquid phase change in saturated porous media
occurs in a wide variety of systems in nature and
engineering. Applications such as freezing and thaw-
ing of soils [1), artificial freezing of ground as a struc-
tural support and as a water barrier for construction
and mining purposes [2], excavation of frozen soil 3],
latent heat-of-fusion energy storage [4], heat transfer
in soil around the heat exchanger coils of a ground
based heat pump [5, 6], metallurgy [7] and other appli-
cations have been discussed at a recent International
Symposium on Cold Region Heat Transfer {8].
Despite these varied and many applications, relatively
very little attention has been given to the study of
solid/liquid phase change of liquid saturated porous
media [9]. The related problem of natural convection
in porous media in the absence of phase change has
been investigated both experimentally and numeri-
cally by many researchers and reviews are available
[10, 11}.

There have been a number of theoretical [2, 12,
13] and experimental [14-17] studies concerned with
melting of frozen porous media. Goldstein and Reid
[12] studied theoretically thawing of frozen porous
media using a mapping technique based on the theory
of complex variables by solving the energy equation
in the frozen region without knowing the shape of the
frozen region. Thawing of soil using electrical heating
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[13] and microwave energy [3] have been investigated.
Both finite element and boundary integral methods
were used to model thawing of frozen soil in the
absence of convection [14]. Melting of a porous
matrix—ice system contained in a cylindrical capsule
was studied using a heat conduction based model [15].
The melting of ice around a horizontal tube embedded
in a porous matrix (glass beads) has been investigated
by Okada and Fukamoto [16]. Melting of a solidified
gallium-glass beads system from a vertical wall has
been studied numerically employing a two-dimen-
sional enthalpy based model [17]. It was conclusively
established both theoretically and experimentally [15—
17] that natural convection in the liquid region con-
siderably influences the shape and the motion of the
melting front.

This paper reports on an experimental and theor-
etical study of melting of a glass beads-ice system.
Melting of frozen ground is of particular interest
because of numerous geophysical and engineering
applications [2]. Glass beads were selected as the
porous matrix because the thermophysical properties
of glass are similar to those of sand, and well char-
acterized uniform size beads were chosen to enable
modeling of the transport processes in both the liquid
and frozen regions. Melting of a glass beads—ice sys-
tem contained in a rectangular test cell heated from
one of the vertical walls was studied. This is a funda-
mental geometry which is amenable to mathematical
modeling of both natural convection in the liquid
region and of the density inversion of water which
occurs at 3.98°C. The macroscopic transport equa-
tions, volumetrically averaged, with phase change
assumed to occur volumetrically over a small tem-
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NOMENCLATURE
A aspect ratio, H/L Greek symbols
C  Forchheimer's constant, 0.55 a thermal diffusivity, k/pc [m2s~')
c specific heat [J kg=' K~'] B coefficient of thermal expansion [K ']
Da  Darcy number, K/L? v volume fraction of liquid phase change
d mean bead diameter [mm] material (PCM) in V;, V/V;
g gravitational acceleration [m s~ é volume fraction of liquid PCM in the
Ah; latent heat of fusion [J kg~ '] volume element, V\/V = ¢y
H  height of liquid level [m] { dimensionless interface position, s/L
K  permeability {m?] n dimensionless vertical coordinate, y/L
k thermal conductivity g dimensionless temperature,
(Wm~'K~'] (T-T)(TW—T)
L length of cavity [m] u dynamic viscosity [N s m~7]
Ra* Rayleigh number for a porous medium, v kinematic viscosity {m?s™']
goKL(T, —T)vay & dimensionless horizontal coordinate, x/L
S subcooling parameter, T dimensionless time, tx,/L?
c(Te—T,)/Ah; ) porosity or volume fraction of PCM in
s interface position from hot wall [m] the volume element, V/V.
Ste  Stefan number, ¢ (T, — T)/Ah¢
T  temperature [K] Subscripts
t time [s] eff effective
u velocity vector, iu+jv f fluid
u velocity component in the x-direction c cold
[ms~ h  hot
V  volume [m?] 1 liquid
v velocity component in the y-direction m  maximum
fms'] p  porous matrix
x horizontal from hot wall, see Fig. 1 [m] ref reference
¥ vertical coordinate, see Fig. 1 [m]. ] solid.

perature range {17} were used. In the liquid region,
both the Brinkman and Forchheimer extensions
were included in the Darcy equation. The effect of
density inversion of water on the fluid flow and
heat transfer were also modeled. The experimental
temperature data and the deduced solid/liquid inter-
face positions were compared with the corre-
sponding predictions of the numerical model.

EXPERIMENTS

Test cell

Melting experiments were performed in a rec-
tangular test cell with inner dimensions of 205 mm in
length, 203 mm in height and 127 mm in width. The
top, bottom, front and back sides were made of Plexi-
glass (12.5 mm thick). Two Plexiglass plates separated
by a 6 mm air gap were used on the front and back
of the test cell to minimize the effect of heat gains and
condensation of moisture (Fig. 1). A 7.5 mm wide and
172 mm long slot was cut in the top plate. The test
cell was filled with water and glass beads through this
opening. A lid snugly fits into this slot. Two 11 mm
diameter holes were cut on this lid to bring out the
thermocouple wires.

Two copper heat exchangers with milled passages

for flow of coolant constituted the left and right end-
walls of the test cell. The flow passages inside the
heat exchanger were milled in such a way that the
maximum temperature variation along the surface of
the heat exchanger was within +0.2°C. Six thermo-
couples were placed along the surface of the heat
exchanger to check the uniformity of the temperature
along the faces. The entire test cell was covered with
50 mm thick Styrofoam on all sides. The test cell was
placed on an iron plate fitted with leveling screws.

Two thermocouple rakes with 21 copper—constantan
thermocouples in each and supported on two half
rings epoxied on to the surface of the heat exchangers
were located at 1/3 and 2/3 height from the bottom
and along the centerplane of the test cell. This was a
compromise between the resolution desired and the
disturbance of the system by additional rakes. The
temperature readings were automatically recorded at
preset time intervals using a data logger connected to
a VAX microcomputer.

Test materials and procedure

Glass beads having diameters of 2.85, 6.0 and 12.5
mm constituted the porous matrix. The properties
used for the numerical study were those of glass with
a chemical composition as close as could be obtained
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FiG. 1. Schematic of test arrangement.

to that of the beads used in this study [18]. The test
cell was filled with glass beads with rakes kept in
position and was shaken manually to ensure close and
random packing. Once distilled and degasified water
was carefully siphoned into the test cell without intro-
ducing air bubbles into the system. A mixture of ethyl
alcohol and water was circulated through the heat
exchangers from two constant-temperature baths and
the porous matrix and water were allowed to cool to
the desired initial temperature.

The melting was initiated by switching one of the
constant temperature baths to a third one that was
already heated separately to the desired temperature.
The natural convection flow in the porous media was
observed in parallel flow visualization experiments.

The heat exchangers have a finite thermal capacity,
and hence a finite time is needed for them to reach
a steady-state temperature. This heat-up transient is
further influenced by the heat absorbed during
melting. The heat exchanger temperature increases
very sharply during a brief initial period (the duration
of which depends on the experimental conditions)
and remains constant afterwards. The duration of this
heat-up transient is small, less than 1% of the duration
(about 5-8 h) of the experiment. Likewise, the vari-
ation of wall temperature along the height of the wall

is about 5% (1°C) (for the first 2-3 min) and drops
to less than 1% (0.2°C) of the average wall tempera-
ture. The variation of the wall temperature along the
width of the heat exchangers is also of about the same
magnitude.

ANALYSIS

The physical system modeled consists of a rec-
tangular cavity with two vertical walls maintained at
two different temperatures and the top and bottom
surfaces insulated. The cavity is filled with a mixture
of water and glass beads and the entire system is first
frozen. At time, ¢ = 0, a uniform temperature greater
than the fusion temperature is imposed on the left
wall. Melting is initiated at this wall and the interface
moves from left to right (Fig. 1). The following sim-
plifying assumptions are made in the analysis: (1) the
porous medium is isotropic, homogeneous and has
uniform porosity ;- (2) the porous matrix and the phase
change materials are in local thermal equilibrium;
(3) the flow is two-dimensional, laminar and incom-
pressible; (4) the volume change due to melting is
negligible ; (5) the phase change medium has a definite
fusion temperature; (6) the porous matrix and the
solid are stationary ; (7) all thermophysical properties
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are independent of temperature ; and (8) the momen-
tum flux due to the interface motion is negligible.

The complicated geometry, heat transfer and the
flow pattern in the system prohibit the solution of the
governing equations at the microscopic level. Hence,
the equations are averaged over a small volume
element. In general, in such a volume element, there
can be both solid and liquid phases along with the
porous matrix. In the melt region, the material is
entirely liquidand y = 1,4 = ¢ and in the solid region,
y = & = 0. Fuller details of the development of the
volume averaged governing equations can be found in
the literature {10, 11]. Even though the phase change is
assumed to occur at a discrete temperature, in a vol-
ume element containing both the porous matrix as
well as the solid and liquid, the average temperature
may be slightly higher or lower than T, Hence, it is
assumed that both solid and liquid may exist sim-
ultaneously in a volume element, if its temperature
lies within a small temperature difference AT, on either
side of the fusion temperature. A more detailed dis-
cussion of the model is given elsewhere [17]. The two-
dimensional conservation of mass, momentum and
energy equations for melting of liquid saturated
porous media are, respectively,

Avu=0 M

o du

o P Vg = — M2
3 al+&2(u Viu Vp+5Vu

C
- [ﬂ + %ﬁ‘iw]“-ﬁ’g @

T
Pl 4 pa(@ VD) = V- (aV) ~b08H T )

The momentum balance takes into account the
unsteady term, Forchheimer’s and Brinkman’s exten-
sions to the Darcy equations. Equation (3) is the
volume averaged energy equation for the general con-
trol volume containing the porous medium solid-
liquid mixture. With the velocity set to zero (u = 0),
equation (3) is also appropriate for the frozen region.
The boundary conditions for temperature are

T=Th at
T=T, at x=1L forally )

x=0 forally

T
%;=Oaty=()and aty=Hforallx. (5)
There is no slip at the walls. At the free surface the
boundary conditions for the velocity are

du .

5}“”"‘0 at y=H for 0<x<s (6)
Fort<0,u=v=0and T=T,.

The buoyancy force is pg, with p denoting the local
density, corresponding to the local temperature. For
fluids having a linear density-temperature relation-
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ship the usual simplification of the buoyancy term can
be carried out. But the density-temperature relation-
ship for water is nonlinear and it attains a maximum
value at 3.98°C. Several equations of state (second,
third and fourth degree polynomials) [19-21] have
been proposed for the density of water as a function
of temperature. In this study we use the approxi-
mation for density of water suggested by Gebhart and
Mollendorf [19]

p = pu(l—0|T—Tnl) M

where @ = 9.2972 x 10~ %(°C) %, and ¢ = 1.8948.
The mean thermal capacitance of the mixture (57)
is defined by

pe = dlypic+ (1 =Np,c]+ (1 —Pppe,. ()

The effective conductivity of the porous media was
calculated using the Veinberg model [22], for it was
found to give the best comparison (as compared to
different models) between predictions and measured
temperatures and interface location for melting of
a glass beads-ice system initially at saturated tem-
perature [15]. It should be stressed that the effective
thermal conductivity of liquid saturated porous media
under static conditions was assumed to be the same
as that for a transient system with a flowing fluid in
which dispersion effects may be present.

The value of the permeability, K, was calculated
from the Kozeny—Carman equation

d2¢3
150 -¢)F

The value of the inertia coefficient C in Forchheimer’s
extension was found to be nearly constant {24}, and 2
value of 0.55 was used in the calculations.

The model equations were solved using the
SIMPLER algorithm [25] and computational details
are given as in an earlier paper {17]. After conducting
numerical sensitivity studies with different grids and
time steps, a uniform grid of 26 x 26 nodal points was
chosen as a compromise between cost and accuracy.

K ®

RESULTS AND DISCUSSION

Experimental results

Experimental conditions. A number of experiments
with several different size beads and several different
superheats were conducted. For space limitations,
only a few of them are discussed here. Additional
results are presented eisewhere [18]. The experimental
conditions are summarized in Table 1. The porosity
was calculated as the ratio of the volume of water
siphoned into the test cell to the volume of the test
cell. All properties of ice, water and glass were taken
at the fusion temperature 0°C. Since water undergoes
a density inversion, the Rayleigh number was cal-
culated as suggested in the literature [21].

From Table 1, it is seen that the porosity ¢ varies
with bead size. For a system of infinite volume, ran-
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Table 1. Summary of expetimental conditions for melting of ice—glass beads system

d T, T, Kx10*
Exp. (mm) (°C) (&) ¢ (m® Dax10’ S Ste Ra*
t 12.5 40 043 0412 180.6 4.9 0.0 0.051 188.6
p 12.5 76 ~095 0412 180.6 429 0.0 0.100 628.5
3 12.5 89 -0.83 0412 180.6 429 0.0 0240 35798
4 12.5 248 -039 0412 180.6 429 0.0 0314 59840
S 12.5 291 -0352 o412 180.6 429 0.0 0.368  8075.2
6 6.0 92 -089 039% 350 83 0.0 0.117 184.0
7 6.0 207 -0.85 039 350 8.3 0.6 0.262 852.7
8 6.0 303 ~-035 0396 35.0 83 0.0 0.385  1767.9
9 6.0 203 =279 039 350 3.3 0.018 0.257 821.0
10 6.0 295 -~453 039 35.0 8.3 0.029 0374  1682.0
it 2.85 297 ~059 0377 6.4 1.5 0.0 0.377 3233
12 2.85 305 ~333 0377 6.4 L3 0.021 0.387 350.0
13 2.85 213 —468 0377 64 1.5 0.03 0.269 1714

domly packed with uniform size spheres, the porosity
is constant and is independent of the bead size [26].
Since the test cells used in experiments are finite in
size, there is a considerable variation of porosity near
the walls, especially with the larger size beads. With
2.85 mm beads, the porosity is close to the theor-
etically expected value for randomly packed beds.
The porosities of the system with the two smaller size
beads are nearly the same, because there is not much
difference in their sizes to affect the packing density.
But, with the larger size beads the porosity is higher.

There are a large number of parameters which affect
the transport processes during the melting of frozen
porous media. The parameters include the Stefan
number {Ste), the Darcy number (Da), the Rayleigh
number for a porous medium (Ra*), the subcooling
parameter (S), and the aspect ratio (4). Some of these
parameters are not independent of each other. For
example, the temperature difference (7}, —~ T) appears
in both the definitions of the Stefan and the Rayleigh
numbers. As a consequence, it is difficult to be com-
prehensive. Some typical results are presented in this
paper, and additional results are available elsewhere
{18].

Effect of bead size. The bead size directly influences
the permeability, equation (9), and hence the Darcy
number of the system. The effect of bead size on
the melting process can be investigated by comparing
results of experiments S, 8, and 11 that have nearly
identical experimental conditions. The small vari-
ations in porosity with bead size cause changes in
permeability and hence also in Rayleigh numbers.

The temperature distributions for experiment 5, at
different times as recorded by the top and bottom
thermocouple rakes, are presented in Fig. 2. At the
start of the experiment, the ice is nearly at the fusion
temperature. The average initial temperature ‘is
—0.52°C. Since the test cell is 20.5 cm wide, even after
circulating coolant through the heat exchangers for
24 h, to bring the system as close to 0°C as possible,
the ice near the two walls is at —0.05°C, whereas in
the central region of the test cell the ice remains at

oy 3352

about ~0.8°C. Further heating of the two walls to
raise the temperature in the central region close to
0°C would melt the ice near the walls. Therefore, the
average initial temperature could not be raised closer
to 0°C.

Initially the melting is solely due to heat transfer by
conduction, and the interface is planar (i.c. the melt
thickness does not vary along the vertical direction).
With the progress of melting, the melt region in the
test cell increases. At early times, the aspect ratio of
the melt region (H/s, where s is the melt thickness) is
very high and it gradually decreases. In the case of
thermal buoyancy-driven convection in a rectangular
cavity filled with a liquid saturated porous medium,
the boundary layers form when the Darcy-modified
Rayleigh number based on the height of the cavity

exceeds a limit given by [27]
(Ra%)"? > 4 (10
where
Ra* = gBKH(T, — T.)/(ave) an
and
& = kea/(per)- (12)

Studies to show the corresponding limits for a water
saturated porous medium in the presence of density
inversion could not be found. The thermal expansion
coefficient of water varies from —67.5x107° to
303.8x 10-% °C~! [28] for the temperature range (0~
30°C) encountered in the experiments. Using the value
of B at the average of the hot wall and interface tem-
peratures (the two bounding temperatures driving
natural convection for experiment 5), one finds that
Ra* = 1030. Accordingly, the vertical boundary
layers develop when

(Ra*)V? =32 > HJs (13)

where s is the instantaneous melt thickness. From Fig.
2, it is seen that the instantaneous aspect ratio based
on the melt thickness (K= 15 ¢m, s=2 cm and
A = 7.5) at t = 0.5 h, is small so that equation (13) is
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Fi1G. 2. Temperature distribution at different times for experiment 5 (d = 12.5 mm, ¢ = 0412, §=0,
Ste = 0.368, Ra* = 8075.2): (a) bottom rake, n = 0.333; (b) top rake, n = 0.667.

satisfied, and the formation of vertical boundary
layers is expected. The time at which the boundary
layers stop growing was determined [27] as

= (pc)eﬂ'Hz
(pc)ex Ra*’

It is evident from Fig. 2 that the boundary layer thick-
ness at different times is the same as that at ¢t = 0.5 h.
The temperature distributions in the boundary layer
qualitatively compare well with their predictions.
Quantitative comparison is not possible, because the
experimental conditions are different.

The temperature distributions reveal that the rate
of melting along the top rake is faster than that along
the bottom. This is similar to that observed during
melting of pure materials in the absence of a porous
matrix [29]. The temperature difference between the
hot wall and the interface drives the natural con-
vection flow in the liquid. The water near the hot wall
rises and turns towards the interface. As the water is
cooled, its density attains a maximum value at 4°C,
and descends along the 4°C isothermal surface form-
ing a clockwise rotating cell. The water in the region
bounded by 0-4°C isotherms has only a small tem-
perature potential to drive the flow and hence is over-
powered by the clockwise circulating flow. The influ-
ence of convection can be seen (from the difference in
melting rates at the two heights) as early as 0.5 h after
the start of melting. At z = 1 h, the melted region was
8.5 cm wide along the top rake and 4.5 cm wide along
the bottom rake. Along the top rake, there is a steep
temperature decrease of about 10°C in the 2 cm thick
region near the hot wall. This distribution quali-
tatively compares well with the predictions of free
convection in a porous layer adjacent to a vertical
impermeable surface [11].

(14)

At the end of a 4 h time period, all the ice had
melted, except for a small amount near the bottom of
the cold wall. After 5 h, the temperature distribution
along the top rake was practically uniform except
for the temperature drop near the hot wall. Strong
convective flow in the top region has effectively elim-
inated the temperature variation. There is a tem-
perature drop of about 8°C in the 2 cm melt region
near the hot wall, and then the temperature remains
constant up to the last thermocouple (3 cm from the
cold wall); however, along the bottom rake (Fig.
2(a)), a temperature gradient is still evident in the melt
region after the 15°C drop in the 2 cm region near the
hot wall.

The temperature distributions along the two rakes
for the intermediate size beads (experiment 8,
Da = 8.3 x 10~ 7) are between those for experiments 5
and 11; therefore, they are not shown for the case of
brevity but are available elsewhere [18]). The tem-
perature distributions at different times along the top
and bottom rakes for experiment 11 are shown in Fig.
3. They reveal that the rate of melting along the top
of the cell is higher than that along the bottom, and
the convective flow is weaker than in experiment 5.
Therefore, even after 1 h there is only a small differ-
ence in the melting rates at the two heights. Only at
later times the effect of convection is seen to produce
higher melting rates along the top than along the
bottom.

A comparison of results presented in Figs. 2 and 3
shows that the difference in temperature distributions
along the two rakes at ¢ = § or 6 h into the experiment,
decreases with decrease in bead size. In other words,
the convective flow is weaker with smaller size beads
and melting is dominated by conduction for longer
times. The rates of melting along the two rakes for
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F1G. 3. Temperature distribution at different times for experiment 11 (d = 2.85 mm, ¢ = 0.377, § = 0.377,
Ra* = 323.3): (a) bottom rake, n = 0.333; (b) top rake, n = 0.667.

experiments 5, 8 and 11 are shown in Fig. 4. There is
more melting at the top than along the bottom rake.
The rate of melting is highest for experiment 5 (strong-
est flow) and smallest for experiment 11 (weakest
flow). This is due to the thermal buoyancy driven
convection in the meit. The results are consistent with
the theoretical predictions of natural convection in
porous media in the absence of melting and motion
of the phase change boundary [27].

Effect of Rayleigh number. For a fixed test cell
(i.e. constant L) and fixed bead size (i.e. constant
permeability, X), changes in hot wall temperature
produce changes in Rayleigh number Ra*. Therefore,

20
Exp. 5 ! 8
15k '
t
H
! ’
3 /S
~ - / -
) ’ /,’ 1 e
’
1 /, ,’/
Y 4 -
skf, AT--""
177"
- -~ 130333
——— s 0667
0 1 1 i
0 2 4 6 8
t v

FiG. 4. Effect of bead size on the rate of melting for exper-
iments 5 (d=12.5 mm), 8 (d=6.0 mm), and 1l (d=
2.85 mm).

the effect of Rayleigh number (with Darcy number
and aspect ratio of the test cell kept fixed) is the same
as the effect of hot wall temperature. This effect can
be delineated by comparing the interface locations
(Fig. 5) of experiments 1, 2, 4 and 5 that have Rayleigh
numbers of 188.6, 628.5, 3579.8 and 8075.2, respec-
tively.

In experiment 1, the Rayleigh number is so small
that the time taken for the onset of convection is the
longest. The melting is controlled by conduction as
revealed by the equal rates of melting along the two
rakes up to about 7 h (Fig. 5). Then, after convection
sets in, the melting rates differ at the two heights, but

20

s (cm)

t

Fi1G. 5. Effect of Rayleigh number on the rate of melting
for experiments | (Ra* = 188.6), 2 (Ra* = 628.5), 4 (Ra* =
5984.0), and 5 (Ra* = 8075.2).
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FiG. 6. Temperature distribution at different times for experiment 1 (d = 12.5 mm, ¢ = 0412, §=0,
Ste = 0.051, Ra* = 188.6): (a) bottom rake, = 0.333,'(b) top rake, n = 0.667.

as the hot wall temperature is just equal to the density
inversion point of water, there is more melting
observed along the bottom rake. As T, is further
increased, the Rayleigh numbers increase and con-
vection sets in at early times as seen from the difference
in the rates of melting along the two rakes (Fig. 5).
With increasing T, the clockwise flow in the region
bounded by the hot wall and the 4°C isotherm
becomes stronger and gradually overpowers the
counterclockwise flow between the interface and the
4°C isotherm. This produces {aster melting along the
top than at the bottom as in the case of pure materials
[29]. With an increase in Rayleigh number, the con-
vective flow becomes stronger, causing larger differ-
ences between the melting rates along the two rakes
even at early times in the experiment. This trend is
characteristic of melting experiments in the absence
of a porous matrix [29].

With an increase in the Rayleigh number, a bound-
ary layer begins to form along the hot wall. It should
be noted that the Rayleigh numbers are based on the
width of the test cell. This characteristic length is not
really meaningful, because as melting progresses
the melt region increases in size and the aspect ratio
also continuously decreases. Unfortunately, alternate
characteristic length scales have not been proposed
in the literature for moving boundary problems. By
comparing the temperature distributions for exper-
iments 1 (Fig. 6) and 5 (Fig. 2), the effect of stronger
convective flow driven by higher thermal buoyancy
forces can be seen clearly. In experiment 1, boundary
layers are not evident and the temperature decreases
monotonically, whereas in experiment 5 the boundary
layer formation is clearly evident.

Effect of density inversion of water. When buoyancy
induced convection takes place in water, if both the
hot and cold wall temperatures are below (above) the

density inversion point of water, then the density of
water in that temperature range (7,,—T,) increases
{decreases) with the increase in temperature. During
melting, the phase change front is at the fusion tem-
perature. If the hot wall temperature is above 4°C,
then there is a location in the liquid along which water
attains its maximum density. The effect of density
inversion on the melting process is discussed below by
comparing the results of experiments 1 and 5.

The temperature distributions along the two rakes
for experiment [ are shown in Fig. 6. At early times,
the temperature in the liquid region decreases mono-
tonically from the hot wall to the interface. This
indicates that heat transfer is predominantly by con-
duction. The temperature difference, (T,,— T.) = 4°C,
is small so the convection is very weak. This is evident
from Fig. 5, which shows the interface positions at
different times along the two rakes. The melting rates
are the same along the two rakes up to about ¢ = 7 h.
Afterwards, the effect of convection is noticeable and
melting along the bottom rake is faster than that along
the top rake. Water near the interface is lighter than
that near the hot wall. Therefore, it rises along the
interface, turns left and flows downwards along the
hot wall as it is heated. Thus, when the liquid reaches
the bottom of the heated wall, it is hotter and causes
more melting near the bottom than at the top. This
counterclockwise flow is opposite to the clockwise
flow observed in melting of common substances in the
absence of density inversion [29].

In experiment 5 the hot wall is at a temperature of
29.05°C. The clockwise flow in the region between the
wall and the 4°C isotherm is much stronger than the
counterclockwise flow in the temperature region 0-
4°C. Therefore, the melting process is similar to that
of common substances and higher melting rates are
observed along the top of the hot wall.
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FiG. 7. Effect of subcooling parameter on the rate of melting
for experiments 8 (S = 0) and 10 (S = 0.029).

Effect of solid subcooling. The subcooling param-
eter, S5, is a measure of the amount of sensible heat
that must be added to the frozen system to raise its
temperature to the fusion temperature. The rates of
melting for experiments 8 (S = 0) and 10 (S = 0.029)
are compared in Fig. 7 to show the effect of the solid
region subcooling on the melting process. The results
show that the subcooling has delayed the initiation
of thermal buoyancy driven convective flow in the
melt, weakened the flow and slowed down the melt-
ing process. A subcooling of —4.5°C (S = 0.029)
retards the melting process to the extent that at the
end of 2 h the melt layer thickness along the top rakes
for experiments 8 and 10 are 13 and 5.9 cm,
respectively. Along the bottom rake, the respective
values are 8 and 3.8 em.

Numerical simulations of melting

The melting of an ice-glass beads system was
numerically simulated using the enthalpy based model
described earlier. In order to provide a more critical
comparison between model predictions and the exper-
imental data, experiment 13 was selected, because
both natural convection flow in the liquid region and
heat conduction in the frozen solid region must be
accounted for in the analysis. Preliminary simulations
were performed, with 26 x 26,41 x 41 and 51 x 51 grid
systems. The computer time and the cost of the simu-
lations were very high for the latter two finer grids.
Additionally, extensive grid independence studies
could not be conducted due to the high cost and large
computer time required. Hence, a 26 x 26 grid was
chosen as a compromise between cost and accuracy.
A value of A8 =0.0195 was used. The time step
was kept small [t = 3.13x 1078 (¢ = 1 )] during the
initial period of simulation when the transients are
large and gradually increased to a maximum of T =
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1.57% 1073 (¢ = 5 5). The simulations were terminated
when the significant variables (velocities and tempera-
tures) agreed up to three decimal places and the
residual mass was less than 10~ % The calculations
required about 21000 s of CPU time on a Cyber 205
supercomputer.

The streamlines and isotherms at v = 0.0226 (¢ =
2 h) (not shown) already revealed the influence of
thermal convection flow on heat transfer and local
melting. The isotherms were inclined towards the cold
wall near the top indicating more melting at the top
than at the bottom. The water near the hot wall is
lighter and rises gaining heat as it flows upwards along
the hot, left wall. At the free surface the flow turns
right and impinges on the interface. It then loses heat,
becomes heavier and flows downwards along the
interface. This causes more melting at the top than at
the bottom as in the case of melting of a pure sub-
stance [29].

Even though the water undergoes a density inver-
sion, the water in the region bounded by 0-4°C iso-
therms has only a small potential to drive the flow
and is overpowered by the flow in the region bounded
by the hot wall and 4°C isothermal surface. Thus, only
one clockwise cell is predicted. The cold wall is at
—4.68°C, and hence there is a temperature difference
of 4.7°C in the solid region bounded by the interface
and the cold wall.

Figure 8 shows the streamlines and isotherms at
t = 0.068 (¢ =6 h). The isotherms clearly reveal a
larger liquid region at the top than at the bottom of
the test cell. The streamlines are smooth and reveal a
single clockwise rotating cell for reasons mentioned
above. The absolute values of the stream functions
have increased with time indicating larger velocity
gradients near the center of the cell. The streamline
and isotherms qualitatively agree with those of
previous investigators [27, 30, 31] who numerically
studied the natural convection in rectangular cavities
filled with porous media in the absence of phase
change,

The temporal variation of the average Nusselt num-
ber at the hot wall is shown in Fig. 9. The average
Nusselt number is defined as

-L oT
T2 e -_— dy 15
H(n—-mjo 6xL-o o 19

using the width of the cavity, L, as the characteristic
length. It should be mentioned that the width of the
cavity is not the most appropriate choice for the length
scale, because the size and shape of the liquid region
changes with time. A more appropriate scale for a
moving boundary problem could not be found in the
literature. The temperature difference used in equa-
tion (15) is that between the hot wall and the melt
front which drives the convective flow in the liquid.
When conduction is the only mode of heat transfer,
the heat flux at the hot wall is inversely proportional
to the square root of time ; therefore, at early times in

Nu,.
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FiG. 8. Predicted flow and temperature fields for experiment 13 at t=6 h (d = 2.85 mm, ¢ = 0.377,
S = 0.03, Ste = 0.269, Re* = 171.4): (a) streamlines (¢ in kg m~' 57 %); (b) isotherms (K).

the simulation the heat flux and the Nusselt number
are very large. As melting progresses, convection cur-
rents set in and the Nusselt number reaches a quasi-
steady value. This trend is similar to that observed in
ref. [32] for melting of pure substances in the absence
of a porous matrix.

Comparison of predicted results with experimental data

A comparison between the predicted and the mea-
sured temperature distributions for experiment 13 at
different times and along the two different vertical
locations is presented in Fig. 10. In general, the agree-
ment between the two results is good, but the tem-
peratures in the liquid region are always overpre-
dicted. Any heat gains from the ambient to the test
cell would tend to increase the temperatures not lower
them; therefore, the gains can be dismissed as the
reason for the discrepancy. Certainly, the porosity
and permeability are not uniform within distances of
a few ball diameters from the melting front and the hot
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FiG. 9. Predicted timewise variation of the average Nusselt

number at the hot wall for conditions of experiment 13

{(d=2.85 mm, ¢ =0377, §=0.03, Ste =0.269, Ra*=
171.4).

wall. In the test cell, the porosity varies exponentially
from a value of unity at the hot wall to about 0.37 in
the region about 3-4 bead diameters away [33]. This
translates to higher permeability and lower resistance
to fluid flow in this region. Additionally, the viscosity
of water decreases by a factor of 1.8 from 1.787 x 10~}
kgsm~'at0°Cto 1.002x 10~ *kgsm~"'at 20°C near
the hot wall [28]. These two factors tend to produce
steeper temperature gradients near the hot wall. The
model has ignored these effects and, therefore, pre-
dicts higher temperatures in the liquid near the hot
wall. Overall, the agreement between the predicted
and measured temperatures in the liquid region is
within 5% and that in the solid region is within 1%
of the total temperature difference across the test cell.
The effect of wall-channeling due to the porosity vari-
ation near the wall and the dependence of viscosity of
water on temperature are believed to be the important
reasons for increasing the temperature gradients near
the hot boundary. The predicted temperature gradi-
ents based on uniform porosity and permeability are
smaller than the measured ones, particularly at later
times in the melting process.

Figure 11 shows a comparison of the predicted and
measured dimensionless interface positions. Along
the top rake, there is good agreement between the
predictions and the experimental data up to about
t = 0.0395 (¢ = 3.5 h). Afterwards, the model predicts
higher melting rates. Along the bottom rake, after
about t =0.0226 (r =2 h), the model predictions
depart from the experimental data. This is because the
temperature in the liquid region is predicted to be
higher than that measured experimentally. But the
model clearly shows that the effect of natural con-
vection is to augment the rate of melting along the
top rake.

There are a number of factors which may contribute
to the discrepancy between data and predictions and
include the following: (1) contraction of the liquid,
(2) inappropriate permeability and effective thermal
conductivity models for the porous media, (3) precise
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F1G. 10, Comparison of experimental and predicted temperature distributions at different times for exper-
iment 13 (d=2.85 mm, ¢ =0.377, §=0.03, Ste =0.269, Ra* = 171.4): (a) top rake, n = 0.667;
(b) bottom rake, n = 0.333.

location of the interface in the region where both the
liquid and solid phases coexist, (4) thermophysical
property variation with temperature, and (5) nu-
merical errors due to an insufficiently fine grid. The
modeling of the permeability in the liquid region,
and in particular in the region where both the liquid
and solid are present may not be accurate [17]. The con-
trol volumes are relatively large (8.5 mm) to be rep-
resented by a node and assigned a single temperature.
All of these factors can affect the flow structure, tem-
perature distributions in the solid and liquid regions
and alter the melting front shape and motion.

CONCLUSIONS

An experimental and numerical study of melting
of a glass beads~ice system has been performed. A
number of different experiments using three different
size beads and subcoolings have been conducted. The
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FiG. 11. Comparison of predicted and experimental melt
front locations for experiment 13 (d = 2.85 mm, ¢ = 0.377,
S = 0.03, Ste = 0.269, Ra* = 171.4).

experiments performed have provided conclusive evi-
dence that natural convection in the liquid region
causes the melting front to become nonplanar and
increases the rate of melting. The intensity of natural
convection in the melted region depends on the Ray-
leigh number of the porous medium Ra*.

An enthalpy based numerical model that considers
both diffusion in the solid and liquid regions and
thermal buoyancy driven convection in the liquid has
been used to simulate melting of liquid saturated
porous media. The numerical predictions were com-
pared with measured temperatures and interface pos-
itions, and good correspondence has been found. The
possible reasons for the discrepancy between model
predictions and the data have been discussed. The
computational resources needed to obtain solutions
were excessive.

There is a need for flow visualization and non-
intrusive diagnostics for temperature and melting
front position measurement in porous media, both in
the absence and in the presence of phase change. There
is also a need for developing efficient, accurate, cost-
effective numerical algorithms for solving the model
equations for two- and three-dimensional solid/liquid
phase change of porous media in the presence of natu-
ral convection.
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CONVECTION NATURELLE PENDANT LA FUSION D'UN MILIEU POREUX

Résumé—On étudie expérimentalement et numériquement la fusion d’un systéme glace-milieu poreux (billes

de verre) contenu dans une cellule

ire pour examiner les cffets de la convection naturelle ct de

Tinversion de densité de I'eau dans la région de fusion. Quand la surchauffe & travers la région liquide est
petite, I'écoulement dans le milieu poreux est faible et Pinterface est plutdt plan. Pour de plus grandes
surchauffes, I'intensité de la convection naturelle, la vitesse et la forme de Pinterface dépendent de la
différence de température imposée et de la perméabilité du milieu poreux. Les distributions mesurées de
température sont comparées aux prédictions d’'un modéle numérique qui considére i la fois la conduction
dans le solide et la convection naturelle dans les régions liquides. Le modéle est basé sur la moyenne
volumétrique des équations de transport, avec un changement de phase supposé se faire volumétriquement
sur un petit domaine de température. On ajoute aux équations de Darcy, les extensions de Brinkman et
Forchheimer. L'effet de I'inversion de densité de 'eau est modélisé. On trouve un accord raisonnablement
bon entre les résultats de I'expérience et du calcul. Ces résultats établissent que la convection naturelle
dans la région de fusion conduit & une forme non planaire du froat et qu'elle accroit la vitesse de fusion.
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SCHMELZEN DURCH NATURLICHE KONVEKTION IN EINEM GEFRORENEN
POROSEN MEDIUM

Zusammenfassung—Das Schmelzen von Eis in einem pordsen Medium (Glasperlen) in einer rechteckigen
Testzelle wurde sowohl experimentell als auch numerisch untersucht, um den EinfluB der natiirlichen
Konvektion und der Dichteinversion bei Wasser in der Schmelzregion zu untersuchen. Ist die Oberhitzung
im Bereich der Fliissigkeit klein, so entsteht nur eine schwache Strdmung im pordsen Medium, und die
Grenzfliche bleibt nahezu eben. Bei stirkerer Uberhitzung hingt die Stirke des Konvektionsstroms, die
Grenzflichengeschwindigkeit und deren Form mabBgeblich von der Hohe der Temperaturdifferenz und
der Durchlissigkeit des pordsen Mediums ab. Die gemessenen Temperaturverteilungen werden mit den
Vorhersagen aus dem numerischen Modell verglichen, das sowohl Wiarmeleitung im Festkorper als auch
natiirliche Konvektion in der Fliissigkeit beriicksichtigt. Das Modell basiert auf ciner volumetrischen
Mittelung der makroskopischen Transportgleichungen mit Phasenwechsel, der als volumetrisch iiber einen
kleinen Temperaturbereich angenommen wird. Sowohl Brinkman- als auch Forchheimer-Beziehungen
werden in die Darcy-Gleichungen eingebaut; die Dichteinversion von Wasser wird beriicksichtigt. Es
wird eine gute Ubereinstimmung zwischen den experimentellen Werten und der numerischen Vorhersage
erreicht. Abschliefend 148t sich sagen, daB natiirliche Konvektion in einem Schmelzbereich die Grenz-
flichenform beeinfluBt und die Schmelzrate erhoht.

TASSHHUE 3AMOPOXEHHOM IMOPHCTOM CPE[BI 3A CUET ECTECTBEHHOM
KOHBEKLHH

Amsoramms—TasHHE CHCTEMBI ICA-TIOPACTAA CPeAa (CTCXNNHHLIC MIAPHKA) B NPAMOYTOJMbHO# ONLTROR
suelixe HCCJIENOBAIOCH JXCICPAMCHTANMHO B TRC/ICNHO Ui BhincHeHnn 3PexTOs ecTecTBenHOR XOHBEX-
UM K KHPCPCHH B TeMUepaTypuioll 3aBRCEMOCTE ILIOTHOCTE 3okl 36ymIH obGnacte nnamnenns. [Ipn
HeGonLUWIOM 3HawCHEM heperpesa monepex xmaxolf ofnacTH Teweume » nopucTolf cpeae cnaboe,
rpaRua pasnena mowrm mnocxas. Halineno, wro mpm Gonee cumHMX neperpesax HHTEHCHBHOCTH
€CTECTPCHHOKOHBCXTHSHOTO TEHCHEN, CKOPOCTD NEPEMEIICHNA IPAHNIIN Pa3fena M ¢¢ npodmuns 3asBcaT
OT NPANOXCHHON PA3HOCTN TEMICPATYP H OT NPOHHIACMOCTE nopacTolt cpeanl. Hamepennnie 3navenns
pacnipenenennfi TemmepaTypM CPRBHHBAIOTCA ¢ PEAyJLTATAMH DAacYeTOB MO uHCAeHHO# MoAesTH, B
KOTOpON YYNTLIBACTCA KAK TCIIONPOBOAHOCTD TBCPROro TENA, TAK B KOHBCKUHR B XHAKXEX ofnacTax.
Mouzens ocroBaHa Ha 00BEMHOM OCPCAHCHEH YPABHCHN{ MAKPOCKOIHECKOTO HEPCHOCA B NPEANOIONKE-
Ham, vr0 $a3onsill nepexon OTPORCXOMAT B0 BoeM 06beMe B HeGOMLIIOM ARANA3OHE TEMOCPaTYD. Ypas-
senua [JlapcH [NONOMHeHH “UleHaMH, yInThisatonmMmE Sbdextit Bpauxmana u ®opuxaitmepa.
Mopnenupyercs sansHHC EHPCPCHR ILTOTHOCTH BOZM HA TCYCHHC XHAKOCTH M Ternonepenoc. Manyweno
HOBOJILHO XOPOILICS COBUANCHEE MEXAY IXCUCPHMCHTAILHLMME JAHHBIMA # PE3YNbTATAMN YHCACHHLIX
pacueros. JIOCTOBEPHO YCTRHOMICHO, YTO M3-3a ecTecTpenHON KORBCXIEH B 06nacTH NnaBieHna Gopma
GPOHTA CTAHOBHTCR HEIIOCKOR H HHTCHCHPHOCTb TARHHSA BO3PACTACT.
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