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Abstract-Melting of an ice-porous media (glass beads) system contained in a rectangular test cell has 
been studied both experimentally and numerically in order to examine the effects of natural convection 
and density inversion of water in the melt region. When the superheat across the liquid region is small the 
flow in the porous media is weak and the interface is almost planar. For larger superheats, the strength of 
natural convection flow, the interface velocity and shape are all found to depend on the imposed temperature 
difference and the permeability of the porous medium. The measured temperature distributions are com- 
pared with predictions of a numerical model that considers both conduction in the solid and natural 
convection in the liquid regions. The model is based on volumetric averaging of the macroscopic transport 
equations, with phase change assumed to occur volumetrically over a small temperature range. Both 
Brinkman and Forchheimer extensions are added to the Darcy equations. The effect of density inversion 
of water on the fluid flow and heat transfer is modeled. Reasonably good agreement is found between the 
experimental data and numerical predictions. The numerical and experimental results establish conclusively 
that natural convection in the melt region causes the front shape to become nonplanar and increases the 

melting rate. 

INTRODUCTION 

%LID/hquid phase change in saturated porous media 
occurs in a wide variety of systems in nature and 
engineering. Applications such as freezing and thaw- 
ing of soils [l], artificial freezing of ground as a struc- 
tural support and as a water barrier for construction 
and mining purposes [2], excavation of frozen soil [3], 
latent heat-of-fusion energy storage [4], heat transfer 
in soil around the heat exchanger coils of a ground 
based heat pump [S, 61, metallurgy [7l and other appli- 
cations have been discussed at a recent International 
Symposium on Cold Region Heat Transfer [8]. 
Despite these varied and many applications, relatively 
very little attention has been given to the study of 
solid/liquid phase change of liquid saturated porous 
media [9]. The related problem of natural convection 
in porous media in the absence of phase change has 
been investigated both experimentally and numeri- 
cally by many researchers and reviews are available 
[lo, 1 I]. 

There have been a number of theoretical [2, 12, 
131 and experimental [14-17] studies concerned with 
melting of frozen porous media. Goldstein and Reid 
[12] studied theoretically thawing of frozen porous 
media using a mapping technique based on the theory 
of complex variables by solving the energy equation 
in the frozen region without knowing the shape of the 
frozen region. Thawing of soil using electrical heating 

7 Present address: Department of Mechanical Engin- 
eering, Florida International University, University Park, 
Miami, FL 33 199, U.S.A. 

[ 131 and microwave energy (31 have been investigated. 
Both finite element and boundary integral methods 
were used to model thawing of frozen soil in the 
absence of convection [14]. Melting of a porous 
matrix-ice system contained in a cylindrical capsule 
was studied using a heat conduction based model [ 151. 
The melting of ice around a horizontal tube embedded 
in a porous matrix (glass beads) has been investigated 
by Okada and Fukamoto [ 161. Melting of a Solidified 
gallium-glass beads system from a vertical wall has 
been studied numerically employing a two-dimen- 
sional enthalpy based model [ 17. It was conclusively 
established both theoretically and experimentally [ 1 S- 
17] that natural convection in the liquid region con- 
siderably influences the shape and the motion of the 
melting front. 

This paper reports on an experimental and theor- 
etical study of melting of a glass beads-ice system. 
Melting of frozen ground is of particular interest 
because of numerous geophysical and engineering 
applications [2]. Glass beads were selected as the 
porous matrix because the thermophysical properties 
of glass are similar to those of sand, and well char- 
acterized uniform size beads were chosen to enable 
modeling of the transport processes in both the liquid 
and frozen regions. Melting of a glass beads-ice sys- 
tem contained in a rectangular test cell heated from 
one of the vertical walls was studied. This is a funda- 
mental geometry which is amenable to mathematical 
modeling of both natural convection in the liquid 
region and of the density inversion of water which 
occurs at 3.98”C. The macroscopic transport equa- 
tions, volumetrically averaged, with phase change 
assumed to occur volumetrically over a small tern- 

887 



888 S. CHELLAIAH and R. VLWANTA 

NOMENCLATURE 

A aspect ratio, H/L Greek symbols 
C Forchheimer’s constant, 0.55 thermal diffusivity, k/pc [m’ s- ‘1 
C specific heat (J kg- ’ K- ‘1 ; coefficient of thermal expansion [K-l] 
Da Darcy number, K/L’ ‘J volume fraction of liquid phase change 
d mean bead diameter [mm] material (PCM) in V, VI/V, 

g gravitational acceleration [m s-*] s volume fraction of liquid PCM in the 
Ahr latent heat of fusion [J kg- ‘1 volume element, V,/V = &l 
H height of liquid level [m] c dimensionless interface position, s/L 
K permeability [m2] 

B 
dimensionless vertical coordinate, y/L 

k thermal conductivity dimensionless temperature, 
[W m-’ K-‘1 (T- T,)Ull- T,) 

L length of cavity [m] fl dynamic viscosity [N s m-3 
Ra* Rayleigh number for a porous medium, kinematic viscosity [m* s- ‘1 

goKL(T, - Tr)%xr ; dimensionless horizontal coordinate, x/L 
S subcooling parameter, dimensionless time, tz,/L’ 

c,(T,- T,)lAh ; P orosity or volume fraction of PCM in 
s interface position from hot wall [m] the volume element, V,! Y. 
Ste Stefan number, q( T,, - Tr)/Ahr 
T temperature [K] Subscripts 
t time [s] eff effective 
U velocity vector, iu + ju f fluid 
u velocity component in the x-direction C cold 

[m s- ‘1 h hot 
V volume [m’] I liquid 

V velocity component in the Y-direction m maximum 
[m s- ‘1 P porous matrix 

X horizontal from hot wall, see Fig. 1 [m] ref reference 

Y vertical coordinate, see Fig. I [ml. S solid. 

perature range [l7] were used. In the liquid region, for flow of coolant constituted the left and right end- 
both the Brinkman and Forchheimer extensions walls of the test cell. The flow passages inside the 
were included in the Darcy equation. The effect of heat exchanger were milled in such a way that the 
density inversion of water on the fluid flow and maximum temperature variation along the surface of 
heat transfer were also modeled. The experimental the heat exchanger was within fO.Z’C. Six thenno- 
temperature data and the deduced solid/liquid inter- couples were placed along the surface of the heat 
face positions were compared with the 
sponding predictions of the numerical model. 

Test cell 

EXPERIMENTS 

Melting experiments were performed in 

corre- exchanger to check the uniformity of the temperature 
along the faces. The entire test cell was covered with 
50 mm thick Styrofoam on all sides. The test cell was 
placed on an iron plate fitted with leveling screws. 

Two thermocouple rakes with 21 copper-constantan 
thermocouples in each and supported on two half 

a rec- rings epoxied on to the surface of the heat exchangers 
tangular test cell with inner dimensions of 205 mm in 
length, 203 mm in height and 127 mm in width. The 
top, bottom, front and back sides were made of Plexi- 
glass (12.5 mm thick). Two Plexiglass plates separated 
by a 6 mm air gap were used on the front and back 
of the test cell to minimize the effect of heat gains and 
condensation of moisture (Fig. 1). A 7.5 m_ wide and 
172 mm long slpt was cut in the top plate. The test 
cell was filled with water and glass beads through this 
opening. A lid snugly fits into this slot. Two 11 mm 
diameter holes were cut on this lid to bring out the 
thermocouple wires. 

Two copper heat exchangers with milled passages 

were located at l/3 and 2/3 height from the bottom 
and along the centerplane of the test cell. This was a 
compromise between the resolution desired and the 
disturbance of the system by additional rakes. The 
temperature readings were automatically recorded at 
preset time intervals using a data logger connected to 
a VAX microcomputer. 

Test materials and procedure 
Glass beads having diameters of 2.85,6.0 and 12.5 

mm constituted the porous matrix. The properties 
used for the numerical study were those of glass with 
a chemical composition as close as could be obtained 
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(b) 

FIG. I. Schematic of test arrangement. 

to that of the beads used in this study [18]. The test 
cell was filled with glass beads with rakes kept in 
position and was shaken manually to ensure close and 
random packing. Once distilled and degasified water 
was carefully siphoned into the test cell without intro- 
ducing air bubbles into the system. A mixture of ethyl 
alcohol and water was circulated through the heat 
exchangers from two constant-temperature baths and 
the porous matrix and water were allowed to cool to 
the desired initial temperature. 

The melting was initiated by switching one of the 
constant temperature baths to a third one that was 
already heated separately to the desired temperature. 
The natural convection flow in the porous media was 
observed in parallel flow visualization experiments. 

The heat exchangers have a finite thermal capacity, 
and hence a finite time is needed for them to reach 
a steady-state temperature. This heat-up transient is 
further influenced by the heat absorbed during 
melting. The heat exchanger temperature increases 
very sharply during a brief initial period (the duration 
of which depends on the experimental conditions) 
and remains constant afterwards. The duration of this 
heat-up transient is small, less than 1% of the duration 
(about 5-g h) of the experiment. Likewise, the vari- 
ation of wall temperature along the height of the wall 

is about 5% (1°C) (for the first 2-3 min) and drops 
to less than 1% (0.2”C) of the average wall tempera- 
ture. The variation of the wall temperature along the 
width of the heat exchangers is also of about the same 
magnitude. 

ANALYSIS 

The physical system modeled consists of a rec- 
tangular cavity with two vertical walls maintained at 
two different temperatures and the top and bottom 
surfaces insulated, The cavity is filled with a mixture 
of water and glass beads and the entire system is first 
frozen. At time, t = 0, a uniform temperature greater 
than the fusion temperature is imposed on the left 
wall. Melting is initiated at this wall and the interface 
moves from left to right (Fig. I). The following sim- 
plifying assumptions are made in the analysis : (1) the 
porous medium is isotropic, homogeneous and has 
uniform porosity ;-(2) the porous matrix and the phase 
change materials are in local thermal equilibrium ; 
(3) the flow is two-dimensional, laminar and incom- 
pressible; (4) the volume change due to melting is 
negligible ; (5) the phase change medium has a definite 
fusion temperature ; (6) the porous matrix and the 
solid are stationary ; (7) all thermophysical properties 
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are independent of temperature; and (8) the momen- 
tum flux due to the interface motion is negligible. 

The complicated geometry, heat transfer and the 
flow pattern in the system prohibit the solution of the 
governing equations at the microscopic level. Hence, 
the equations are averaged over a small volume 
element. In general, in such a volume element, there 
can be both solid and liquid phases along with the 
porous matrix. In the melt region, the material is 
entirely liquid and y = 1, S = b, and in the solid region, 
y = 5 = 0. Fuller details of the development of the 
volume averaged governing equations can be found in 
the literature [lo, Ill. Even though the phase change is 
assumed to occur at a discrete temperature, in a vol- 
ume element containing both the porous matrix as 
weil as the solid and liquid, the average temperature 
may be slightly higher or lower than Tp Hence, it is 
assumed that both solid and liquid may exist sim- 
ultaneously in a volume element, if its temperature 
lies within a small temperature difference AT, on either 
side of the fusion temperature. A more detailed dis- 
cussion of the model is given elsewhere [ 171. The two- 
dimensional conflation of mass, momentum and 
energy equations for melting of liquid saturated 
porous media are, respectively, 

A*u=O 

PI Ju PI -$-6;+$(u’v)u= -vp+;v%r 

- ~+$&&ig m 

(3) 

the 

The value of the inertia coefficient C in Forchheimer’s 
extension was found to be nearly constant [24], and a 
value of 0.55 was used in the calculations. 

The momentum balance takes into account 
unsteady term, Forchheimer’s and Brinkman’s exten- 
sions to the Darcy equations. Equation (3) is the 
volume averaged energy equation for the general con- 
trol volume containing the porous medium solid- 
liquid mixture. With the velocity set to zero (u = 0), 
equation (3) is also appropriate for the frozen region. 

The model equations were solved using the 
SIMPLER algorithm [25] and computational details 
are given as in an earlier paper [I?. After conducting 
numerical ~~iti~ty studies with different grids and 
time steps, a uniform grid of 26 x 26 nodal points was 
chosen as a compromise between cost and accuracy. 

The boundary conditions for temperature are RESULTS AND DISCUSSION 

fl) 

T = T,, at x I 0 for all y 

T-T, at x=L forally (4) 

c3T 
-=Oaty=Oandaty==Uforallx. 
JY 

(5) 

There is no slip at the walls. At the free surface the 
boundary conditions for the velocity are 

au 

;53=c 
= 0 at y = N for 0 <x-c s. (6) 

Fort<O,u=v=OandT=T,. 
The buoyancy force is pg, with p denoting the local 

density, corresponding to the local temperature. For 
fluids having a linear density-tincture relation- 

ship the usual simplification of the buoyancy term can 
be carried out. But the density-temperature relation- 
ship for water is nonlinear and it attains a maximum 
value at 3.98”C. Several equations of state (second, 
third and fourth degree polynomials) [19-211 have 
been proposed for the density of water as a function 
of temperature. In this study we use the approxi- 
mation for density of water suggested by Gebhart and 
Mollendo~ [ 191 

p = p,Cl -wlT- 7-J’) (7) 

where o = 9.2972 x 10-6(“C)-~, and q = 1.8948. 
The mean thermal capacitance of the mixture (9) 

is defined by 

P=cbfvP,s+(1-Y)P,c,l+~~-~~P,~,. (8) 

The effective conductivity of the porous media was 
calculated using the Veinberg model 1221, for it was 
found to give the best comparison (as compared to 
different models) between predictions and measured 
temperatures and interface location for melting of 
a glass beads-ice system initially at saturated tem- 
perature [lSJ. It should be stressed that the effective 
thermal conductivity of liquid saturated porous media 
under static conditions was assumed to be the same 
as that for a transient system with a lowing fluid in 
which dispersion effects may be present. 

The value of the permeability, K, was calculated 
from the Kozeny-Carman equation 

Experimental results 
Experimental conditi&n.s. A number of experiments 

with several different size beads and several different 
superheats were conducted. For space limitations, 
only a few of them are discussed here. Additional 
results are presented elsewhere [ 185 The experimental 
conditions are summarized in Table 1. The porosity 
was calculated as the ratio of the volume of water 
siphoned into the test cell to the volume of the test 
cell. All properties of ice, water and glass were taken 
at the fusion temperature 0°C. Since water undergoes 
a density inversion, the Rayleigh number was cal- 
culated as suggested in the literature [21]. 

From Table 1, it is seen that the porosity 4 varies 
with bead size. For a system of infinite volume, ran- 
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Table I. Saw OF expetimtntai conditions for melting of &glass beads system 
_.~ ~ 

Kx IO9 
Exp. (r& & (rn3 Dux 10’ S Ste Ra* 

1 12.5 4.0 -0.43 0,412 180.6 42.9 0.0 0.05 1 188.6 
2 12.5 7.6 -0.95 0.412 180.6 42.9 0.0 0.100 628.5 

: 12.5 12.5 24.8 18.9 -0.83 -0.39 0.412 0.412 180.6 180.6 42.9 42.9 0.0 0.0 0.240 0.314 3579.8 5984.0 

: 12.5 6.0 29 9’2 I 
7 6.0 20:7 

-0.52 -0.89 0.412 0.3% 180.6 35.0 42.9 8.3 0.0 0.0 0.368 0.117 8075.2 184.0 
-0.85 0.3% 35.0 8.3 0.0 0.262 852.7 

f: 60 6:0 30.3 20.3 -2.79 -0.35 0.396 0.3% 35.0 35.0 8.3 8.3 0.0 0.018 0.385 0.257 1767.9 821.0 
10 6.0 29.5 -4.53 0.396 35.0 8.3 0.029 0.374 1682.0 
11 2.85 29.7 -0.59 0.377 6.4 1.5 0.0 0.317 323.3 
12 2.85 30.5 -3.33 0.377 6.4 1.5 0.021 0.387 350.0 
13 2.85 21.3 -4.68 0.377 6.4 1.5 0.03 0.269 171.4 

domly packed with uniform sire spheres, the porosity 
is constant and is independent of the bead size [26]. 
Since the test cells used in experiments are finite in 
size, there is a considerable variation of porosity near 
the walls, especially with the larger sixc beads. With 
2.85 mm heads, the porosity is close to the theor- 
etically expected value for randomly packed beds. 
The porosities of the system with the two smaller size 
beads are nearly the same, because there is not much 
difference in their sixes to affect the packing density. 
But, with the larger size beads the porosity is higher. 

There are a large number of parameters which affect 
the transport processes during the melting of frozen 
porous media. The parameters include the Stefan 
number (Sre), the Darcy number {Dc), the Rayleigh 
number for a .porous medium (Be*), the subcooling 
parameter (s), and the aspect ratio (A). Some of these 
parameters are not independent of each other. For 
example, the temperature difference (Th - Tr) appears 
in both the ddinitions of the Stefan and the Rayleigh 
numbers. As a consequence, it is difficult to be com- 
prehensive. Some typical results ate presented in this 
paper, and additional results are available elsewhere 
Pgl. 

Eff;ct ofbead size. The bead sixc directly influences 
the permeability, equation (9), and hence the Darcy 
number of the system. The effect of bead size on 
the melting process can be investigated by comparing 
results of experiments 5, 8, and 1 I that have nearly 
identical experimental conditions. The small vari- 
ations in porosity with bead size cause changes in 
permeability and hence also in Rayleigh numbers. 

The temperature dist~butions for experiment 5, at 
different times as recorded by the top and bottom 
thermocouple rakes, are presented in Fig. 2. At the 
start of the experiment, the ice is nearly at the fusion 
temperature. The average initial temperature -is 
-052°C. Since the test cell is 20.5 cm wide, even after 
circulating coolant through the heat exchangers for 
24 h, to bring the system as close to 0°C as possible, 
the ice near the two walls is at -O.OS”C, whereas in 
the central region of the test cell the ice remains at 

II tt:t.t 

about -O.&XT. Further heating of the two walls to 
raise the temperature in the central region close to 
0°C would melt the ice near the walls. Therefore, the 
average initiaI temperature could not be raised closer 
to 0°C. 

Initially the melting is solely due to heat transfer by 
conduction, and the interface is planar (i.e. the melt 
thickness does not vary along the vertical direction). 
With the progress of melting, the melt region in the 
test cell increases. At early times, the aspect ratio of 
the melt region (H/s, where s is the melt thickness) is 
very high and it gradually decreases. In the case of 
thermal buoyan~d~ven convection in a rectangular 
cavity filled with a iiquid saturated porous medium, 
the boundary layers form when the Darcy-modified 
Rayleigh number based on the height of the cavity 
exceeds a limit given by 1271 

where 

(I&P)“2 > A (10) 

and 

a = k*ffl(p~~). (12) 

Studies to show the corresponding limits for a water 
saturated porous medium in the presence of density 
inversion could not be found. The thermal expansion 
coefficient of water varies from -67.5 x 10e6 to 
303.8 x 10V6 “C- t [28] for the temperature range (O- 
30°C) encountered in the experiments. Using the value 
of fi at the average of the hot wall and interface tem- 
peratures (the two bounding temperatures driving 
natural convection for experiment S), one 6nds that 
Ra+ = 1030. Accordingly, the vertical boundary 
layers develop when 

(Ra’) I” = 32 > H/s (13) 

where s is the instantaneous melt thickness. From Fig. 
2, it is seen that the instantaneous aspect ratio based 
on the melt thickness (K= 15 cm, s = 2 cm and 
R = 7.5) at t = 0.5 h, is small so that equation (I 3) is 
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x (cm) 

FIG. 2. Temperature distribution at different times for experiment 5 (d- 12.5 mm, I$ = 0.412, S = 0, 
Ste = 0.368, Ru* = 8075.2) : (a) bottom rake, q = 0.333 ; (b) top rake, 1 = 0.667. 

satisfied, and the formation of vertical boundary 
layers is expected. The time at which the boundary 
layers stop growing was determined [27] as 

It is evident from Fig. 2 that the boundary layer thick- 
ness at different times is the same as that at t = 0.5 h. 
The temperature distributions in the boundary layer 
qualitatively compare well with their predictions. 
Quantitative comparison is not possible, because the 
experimental conditions are different. 

The temperature distributions reveal that the rate 
of melting along the top rake is faster than that along 
the bottom. This is similar to that observed during 
melting of pure materials in the absence of a porous 
matrix (291. The temperature difference between the 
hot wall and the interface drives the natural con- 
vection flow in the liquid. The water near the hot wall 
rises and turns towards the interface. As the water is 
cooled, its density attains a maximum value at 4”C, 
and descends along the 4°C isothermal surface form- 
ing a clockwise rotating cell. The water in the region 
bounded by 0-W isotherms has only a small tem- 
perature potential to drive the flow and hence is over- 
powered by the clockwise circulating flow. The influ- 
ence of convection can be seen (from the difference in 
melting rates at the two heights) as early as 0.5 h after 
the start of melting. At r = 1 h, the melted region was 
8.5 cm wide along the top rake and 4.5 cm wide along 
the bottom rake. Along the top rake, there is a steep 
temperature decrease of about 10°C in the 2 cm thick 
region near the hot wall. This distribution quali- 
tatively compares well with the predictions of free 
convection in a porous layer adjacent to a vertical 
impermeable surface [ 1 I]. 

At the end of a 4 h time period, all the ice had 
melted, except for a small amount near the bottom of 
the cold wall. After. 5 h, the temperature distribution 
along the top rake was practically uniform except 
for the temperature drop near the hot wall. Strong 
convective flow in the top region has effectively elim- 
inated the temperature variation. There is a tem- 
perature drop of about 8°C in the 2 cm melt region 
near the hot wall, and then the temperature remains 
constant up to the last thermocouple (3 cm from the 
cold wall); however, along the bottom rake (Fig. 
2(a)), a temperature gradient is still evident in the melt 
region after the 15°C drop in the 2 cm region near the 
hot wall. 

The temperature distributions along the two rakes 
for the intermediate size beads (experiment 8, 
Da = 8.3 x lo-‘) are between those for experiments 5 
and 11; therefore, they are not shown for the case of 
brevity but are available elsewhere [18]. The tem- 
perature distributions at different times along the top 
and bottom rakes for experiment 11 are shown in Fig. 
3. They reveal that the rate of melting along the top 
of the cell is higher than that along the bottom, and 
the convective flow is weaker than in experiment 5. 
Therefore, even after 1 h there is only a small differ- 
ence in the melting rates at the two heights. Only at 
later times the effect of convection is seen to produce 
higher mehing rates along the top than along the 
bottom. 

A comparison of results presented in Figs. 2 and 3 
shows that the difference in temperature distributions 
along the two rakes at r = 5 or 6 h into theexperiment, 
decreases with decrease in bead size. In other words, 
the convective flow is weaker with smaller size beads 
and melting is dominated by conduction for longer 
times. The rates of melting along the two rakes for 
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FIG. 3. Temperature distribution at different times for experiment 11 fd = 2.85 mm, d, = 0.377,s = 0.377, 
Ra* = 323.3) : (a) bottom rake, q = 0.333; (b) top rake, 1 =i 0.667. 

experiments $8 and 1 I are shown in Fig. 4. There is 
more melting at the top than along the bottom rake. 
The rate of melting is highest for experiment 5 (strong- 
est flow) and smallest for experiment 11 (weakest 
flow). This is due to the thermal buoyancy driven 
convection in the melt. The results are consistent with 
the theoretical predictions of natural convection in 
porous media in the absence of melting and motion 
of the phase change boundary [27’J. 

Efiet of Rayleigh number. For a fixed test cell 
(i.e. constant L} and Axed bead size (i.e. constant 
permeability, K), changes in hot wall tem~~ture 
produce changes in Rayleigh number Ra*. Therefore, 

the effect of Rayleigh number (with Darcy number 
and aspect ratio of the test cell kept tied) is the same 
as the effect of hot wall temperature. This effect can 
be delineated by comparing the interface locations 
(Fig. 5) ofexperiments 1,2,4 and 5 that have Rayleigh 
numbers of 188.6, 628.5, 3579.8 and 8075.2, respec- 
tively. 

In experiment 1, the Rayleigh number is so small 
that the time taken for the onset of convection is the 
longest. The melting is controlled by conduction as 
revealed by the equal rates of melting along the two 
rakes up to about 7 h (Fig. 5). Then, after convection 
sets in, the melting rates differ at the two heights, but 

FOG. 4. 
iments 

8 

Effect of bead size on the rate of melting for exper- 
5 (d= 12.5 mm), 8 (dd6.0 mm), and 11 (de 

2.85 mm). 

5 

Ftr~ 5. E&t of Ra@igh number on the rate of melting 
for eXperimcnts 1 (Ra’ = 188.6), 2 (Ro* P 62&S), 4 (Ra* = 

5984.0), and 5 (Ru* = 8075.2). 
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5 10 15 0 5 10 15 z 

x km) 

FIG. 6. Temperature distribution at different times for experiment I (d = 12.5 mm, $ = 0.412, S = 0, 
Sle = 0.051. Ra* = 188.6) : (a) bottom rake, ir fp 0.333 ;.(b) top rake, r7 = 0.667. 

as the hot wall tem~ratu~ is just equal to the density 
inversion point of water, there is mom melting 
observed along the bottom rake. As T,, is further 
increased, the Rayleigh numbers increase and con- 
vection sets in at early times as seen from the difference 
in the rates of melting along the two rakes (Fig. 5). 
With increasing T,, the clockwise flow in the region 
bounded by the hot wall and the 4% isotherm 
becomes stronger and gradually overpowers the 
countercl~kwi~ flow between the interface and the 
4’C isotherm. This produces faster melting along the 
top than at the bottom as in the case of pure materials 
[29]. With an increase in Rayleigh number, the con- 
vective flow becomes stronger, causing larger differ- 
ences between the melting rates along the two rakes 
even at early times in the experiment. This trend is 
characteristic of melting experiments in the absence 
of a porous matrix [29]. 

With an increase in the Rayieigh number, a bound- 
ary layer begins to form along the hot wail. It should 
be noted that the Rayleigh numbers are based on the 
width of the test cell. This characteristic length is not 
really meaningful, because as melting progresses 
the melt region increases in size and the aspect ratio 
also continuously decreases. Unfortunately, alternate 
characteristic length scales have not been proposed 
in the literature for moving boundary problems. By 
comparing the temperature distributions for exper- 
iments 1 (Fig. 6) and 5 (Fig 2), the effect of stronger 
convective flow driven by higher thermal buoyancy 
forces can be seen clearly. In experiment 1, boundary 
layers are not evident and the temperature decreases 
monotonically, whereas in experiment 5 the boundary 
layer formation is clearly evident. 

Eflect of density ~~e~sjo~ ofwater. When buoyant 
induced convection takes place in water, if both the 
hot and cold wall temperatures are below (above) the 

density inversion point of water, then the density of 
water in that temperature range (Th- T,) increases 
(decreases) with the increase in temperature. During 
melting, the phase change front is at the fusion tem- 
perature. If the hot wall temperature is above 4°C 
then there is a location in the liquid along which water 
attains its maximum density. The effect of density 
inversion on the melting process is discussed below by 
comparing the results of experiments 1 and 5. 

The temperature dist~butions along the two rakes 
for experiment 1 are shown in Fig. 6. At early times, 
the temperature in the liquid region decreases mono- 
tonically from the hot wall to the interface. This 
indicates that heat transfer is predominantly by con- 
duction. The temperature difference, (T,- T,) = 4°C 
is small so the convection is very weak. This is evident 
from Fig. 5, which shows the interface positions at 
different times along the two rakes. The melting rates 
are the same along the two rakes up to about t = 7 h. 
Afterwards, the effect of convection is noticeable and 
melting along the bottom rake is faster than that along 
the top rake. Water near the interface is lighter than 
that near the hot wall. Therefore, it rises along the 
interface, turns left and flows downwards along the 
hot wail as it is heated. Thus, when the liquid reaches 
the bottom of the heated wall, it is hotter and causes 
more melting near the bottom than at the top. This 
counterclockwise flow is opposite to the ctockwise 
flow observed in melting of common substances in the 
absence of density inversion [29]. 

In experiment 5 the hot wall is at a temperature of 
29.05”C. The clockwise flow in the region between the 
wall and the 4°C isotherm is much stronger than the 
counterclockwise flow in the temperature region O- 
4°C. Therefore, the melting process is similar to that 
of common substances and higher melting rates are 
observed along the top of the hot wall. 
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Fm. 7. Elect of subcooling parameter on the rate of melting 
for experiments 8 (S = 0) and 10 (S = 0.029). 

Efict of so&d ~~~~~i~~. The subcooling param- 
eter, S, is a measure of the amount of sensible heat 
that must be added to the frozen system to raise its 
temperature to the fusion temperature. The rates of 
melting for experiments 8 (S = 0) and 10 (S = 0.029) 
are compared in Fig. 7 to show the effect of the solid 
region subcooling on the melting process. The results 
show that the subcooling has delayed the initiation 
of thermal buoyancy driven convective flow in the 
melt, weakened the flow and slowed down the melt- 
ing process. A subcooling of -4S”C (S = 0.029) 
retards the melting process to the extent that at the 
end of 2 h the melt layer thickness along the top rakes 
for experiments 8 and 10 are 13 and 5.9 cm, 
respectively. Along the bottom rake, the respective 
values are 8 and 3.8 cm. 

The melting of an ice-glass beads system was 
numerically simulated using the enthalpy based mode1 
described earlier. In order to provide a more critical 
comparison between model predictions and the exper- 
imental data, experiment 13 was selected, because 
both natural convection flow in the liquid region and 
heat conduction in the frozen solid region must be 
accounted for in the analysis. F~lirnina~ simulations 
were performed, with 26 x 26,41 x 41 and 51 x 51 grid 
systems. The computer time and the cost of the simu- 
lations were very high for the latter two finer grids. 
Additionally, extensive grid independence studies 
could not be conducted due to the high cost and large 
computer time required. Hence, a 26 x 26 grid was 
chosen as a compromise between cost and accuracy. 
A value of A6 = 0.0195 was used. The time step 
was kept small [T = 3.13 x low6 (t = 1 s)] during the 
initial period of simulation when the transients are 
large and gradually increased to a maximum of T = 

1.57 x 10Vs (f = 5 s). The simulations were terminated 
when the significant variables (velocities and tempera- 
tures) agreed up to three decimal places and the 
residual mass was less than 10T6. The calculations 
required about 21000 s of CPU time on a Cyber 205 
supercomputer. 

The streamlines and isotherms at r = 0.0226 (t = 
2 h) (not shown) already revealed the in~uen~ of 
thermal convection lIow on heat transfer and local 
melting. The isotherms were inclined towards the cold 
wall near the top indicating more melting at the top 
than at the bottom. The water near the hot wall is 
lighter and rises gaining heat as it flows upwards along 
the hot, left wall. At the free surface the flow turns 
right and impinges on the interface. It then loses heat, 
becomes heavier and flows downwards along the 
interface. This causes more melting at the top than at 
the bottom as in the case of melting of a pure sub- 
stance [29]. 

Even though the water undergoes a density inver- 
sion, the water in the region bounded by 0-4’C iso- 
therms has only a small potential to drive the flow 
and is overpowered by the flow in the region bounded 
by the hot wall and 4°C isothermal surface. Thus, only 
one clockwise cell is predicted. The cold wall is at 
-4.68”C, and hence there is a temperature difference 
of 4.7% in the solid region bounded by the interface 
and the cold wall. 

Figure 8 shows the streamlines and isotherms at 
r = 0.068 (t = 6 h). The isotherms clearly reveal a 
larger liquid region at the top than at the bottom of 
the test cell. The streamlines are smooth and reveal a 
single clockwise rotating cell for reasons mentioned 
above. The absolute values of the stream functions 
have increased with time indicating larger velocity 
gradients near the center of the cell. The streamline 
and isotherms qualitatively agree with those of 
previous investigators [27, 30, 311 who numerically 
studied the natural convection in rectangular cavities 
filled with porous media in the absence of phase 
change. 

The temporal variation of the average Nusselt num- 
ber at the hot wall is shown in Fig. 9. The average 
Nusselt number is defined as 

Nu,, = (15) 

using the width of the cavity, L, as the characteristic 
length. It should be mentioned that the width of the 
cavity is not the most appropriate choice for the length 
scale, because the size and shape of the liquid region 
changes with time. A more appropriate scale for a 
moving boundary problem could not be found in the 
literature. The temperature difference used in equa- 
tion (15) is that between the hot wall and the melt 
front which drives the convective flow in the liquid. 
When ~nd~tion is the only mode of heat transfer, 
the heat flux at the hot wall is inversely proportional 
to the square root of time; therefore, at early times in 



8% S. CHELLAIAH and R. WKANTA 

FIG. 8. Predicted ftow and temperature fields for experiment I3 at t = 6 h (d = 2.85 mm, (0 = 0.377, 
S = 0.03, Ste = 0.269, Re* = 171.4): (a) streamlines (J, in kg m-l s-l); (b) isotherms(K). 

the simulation the heat flux and the Nusselt number 
are very large. As melting progresses, convection cur- 
rents set in and the Nusselt number reaches a quasi- 
steady value. This trend is similar to that observed in 
ref. [32] for melting of pure substances in the absence 
of a porous matrix. 

Comparison of predicted results with experimental data 
A comparison between the predicted and the mea- 

sured temperature distributions for experiment 13 at 
different times and along the two different vertical 
locations is presented in Fig. 10. In general, the agree- 
ment between the two results is good, but the tem- 
peratures in the liquid region are always overpre- 
dieted. Any heat gains from the ambient to the test 
cell would tend to increase the temperatures not lower 
them; therefore, the gains can be dismissed as the 
reason for the discrepancy. Certainly, the porosity 
and permeability are not uniform within distances of 
a few bail diameters from the melting front and the hot 
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FIG. 9. Predicted timewise variation of the average Nusselt 
number at the hot wall for conditions of exnerixnent 13 
(d- 2.85 mm, Cp = 0.377, S- 0.03, Ste = 0.269, Rff = 

171.4). 

wall. In the test cell, the porosity varies exponentially 
from a value of unity at the hot wall to about 0.37 in 
the region about 3-4 bead diameters away [33]. This 
translates to higher permeability and lower resistance 
to fluid Bow in this region. Additionally, the viscosity 
of water decreases by a factor of 1.8 from 1.787 x lo- 3 
lcgsm-‘atO”Cto1.002x 10-3kgsm-‘at20”Cnear 
the hot wall [28]. These two factors tend to produce 
steeper temperature gradients near the hot wall. The 
model has ignored these effects and, therefore, pre- 
dicts higher temperatures in the liquid near the hot 
wall. Overall, the agreement between the predicted 
and measured temperatures in the liquid region is 
witbin 5% and that in the solid region is within 1% 
of the total temperature difference across the test ceil. 
The effect of wall-channeling due to the porosity vari- 
ation near the wall and the dependence of viscosity of 
water on temperature are believed to be the important 
reasons for increasing the temperature gradients near 
the hot boundary. The predicted temperature gradi- 
ents based on uniform porosity and permeability are 
smailer than the measured ones, particulaariy at later 
times in the melting process. 

Figure 11 shows a comparison of the predicted and 
measured dimensionless interface positions. Along 
the top rake, there is good agreement between the 
predictions and the experimental data up to about 
r =c 0.0395 (t = 3.5 h). Afterwards, the model predicts 
higher mehing rates. Along the bottom rake, after 
about r = 0.0226 (t = 2 h), the model predictions 
depart from the experimental data. This is because the 
temperature in the liquid region is predicted to be 
higher than that measured experimentally. But the 
model clearly shows that the effect of natural con- 
vection is to augment the rate of melting along the 
top rake. 

There are a number of factors which may contribute 
to the discrepancy between data and predictions and 
include the following: (1) contraction of the liquid, 
(2) inapprop~ate permeability and effective thermal 
conductivity models for the porous media, (3) precise 
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FIG. 10. Comparison of experimental and predicted temperature distributions at different times for exper- 
iment 13 (d = 2.85 mm, I#J = 0.377, S = 0.03, Sfe = 0.269, Ra* = 171.4): (a) top rake, g = 0.667; 

(b) bottom rake, q = 0.333. 
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location of the interface in the region where both the 
liquid and solid phases coexist, (4) thermophysical 
property variation with temperature, and (5) nu- 
merical errors due to an insufficiently fine grid. The 
modeling of the permeability in the liquid region, 
and in particular in the region where both the liquid 
and solid are present may not be accurate [ 17. The con- 
trol volumes are relatively large (8.5 mm) to be rep- 
resented by a node and assigned a single temperature. 
All of these factors can affect the flow structure, tem- 
perature distributions in the solid and liquid regions 
and alter the melting front shape and motion. 

CONCLUSIONS 

An experimental and numerical study of melting 
of a glass beads-ice system has been performed. A 
number of different experiments using three different 
size beads and subcoolings have been conducted. The 

2 4 6 
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FIG. 11. Comparison of predicted and experimental melt 
front locations for experiment 13 (d = 2.85 mm, d, = 0.377, 

S = 0.03, Sre = 0.269, Ra* = 171.4). 

experiments performed have provided conclusive evi- 
dence that natural convection in the liquid region 
causes the melting front to become nonplanar and 
increases the rate of melting. The intensity of natural 
convection in the melted region depends on the Ray- 
leigh number of the porous medium &I+. 

An enthalpy based numerical model that considers 
both diffusion in the solid and liquid regions and 
thermal buoyancy driven convection in the liquid has 
been used to simulate melting of liquid saturated 
porous media. The numerical predictions were com- 
pared with measured temperatures and interface pos- 
itions, and good correspondence has been found. The 
possible reasons for the discrepancy between model 
predictions and the data have been discussed. The 
computational resources needed to obtain solutions 
were excessive. 

There is a need for flow visualization and non- 
intrusive diagnostics for temperature and melting 
front position measurement in porous media, both in 
the absence and in the presence of phase change. There 
is also a need for developing efficient, accurate, cost- 
effective numerical algorithms for solving the model 
equations for two- and three-dimensional solid)liquid 
phase change of porous media in the presence of natu- 
ral convection. 
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CONVECI’ION NATURELLE PENDANT LA FUSION D’UN MILIEU POREUX 

w &die wtakment et n~uement la fusion d’un sy&me *milieu poreux @iUes 
de varr) c#ntenu dans une &hale w pour examiner Ies etEet.s de la convection naturelle et de 
I’mversion de den& de I’eau dans la r&on de fusion. Quand la surcltau@e B‘travers la &gion Bquide est 
petite, l%coulement dans le milieu poreux est ftible et l’lnterface est pi&t plan. Pour de pius grandes 
surcbauffes, l’intensid de la convection naturelle, la vitesse et la forme de l’interfw -dent de Ia 
dit%rence de temp&ature impos& et de la permcllbiliti du milieu poreux. Lcs distributions mesur&s de 
tempirature sont compar&es aux p&dictions d’un mod& num&ique qui consid&re rl la fois la conduction 
dam le solide et la convection naturelle dans les t&ions liquides. Le mod& est ba& sur la moyenne 
volum&rique des &ptations de transport, avec un &ngcment de phase sup@ se faire voldtxiquement 
sur un petit domaine de tcmp&rature. On ajoute aux Equations de Darcy, ks extensions de Brinkman et 
Fonzhheimer. L’effet de I*inversion de den&& de l’eau eat mod&i& On trouve un accord raisomtabkment 
bon entre les r&It&s de l’exp&ience et du cakul. Ces r&&tats &ablissent que la convection naturelle 
dans la &ion de fusion conduit B une fotme non phmaire du front et qu’elle aoeroit la vitesse de fusion. 
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SCHMELZEN DURCH NAT-URLICHE KONVEKTION IN EINEM GEFRORENEN 
PORGSEN MEDIUM 

Zwsarnm4~Da.s S&m&en von Eis in einem por6sen Medium (Glasperlen) in einer rechteckigen 
Testxelle wurde sowohl experimented als au& mtmerisch untersucht, urn den Einflug der natiirlichen 
Konvektion und der Dichteinversion bei Wasser in der Schmelxregion xu untenuchen. 1st die Uberhitxung 
hn Bereich der Flijssigkeit klein, so entsteht nur eine schwache Striimung im potisen Medium, und die 
Grenxlbiche bleibt nahexu cben. Bei stiirkerer Uberhitxung tingt die St&kc des Konvektionsstroms, die 
GrenafHchengeachwindigkeit und deren Form maBgeblich von der Hcihe der Temperaturdiierenx und 
der DurchHssigkeit des podsen Mediums ab. Die gemessenen Temperaturverteihmgen werden mit den 
Vorhersagen aus dem numerischen Model1 verglichen, das sowohl Wirmeleitung im Festkiirper als such 
nattirliche Konvektion in der Fhissigkeit beriicksichtigt. Das Model1 basiert auf titter volumetrischen 
Mittelung der makroskopischen Transportgleichungen mit Phasenwechsel, der als volumetrisch iiber einen 
kleinen Temperaturbereich angenommen wird. Sowohl Brinkman- als such Forchheimer-Bexiehungen 
werden in die Darcy-Gleichungen eingebaut; die Dichteinversion von Wasser wird berticksichtigt. Es 
wird eine gute Obereinstimmung zwischen den experimentellen Werten und der numerischen Vorhersage 
emicht. AbschlieDend 1HDt sich sagen, daB natiirliche Konvcktion in einem Schmelzbereich die Grenz- 

Schenform beeinfluBt und die Schmelzrate erhcht. 


